

International Symposium on Biomedical Imaging

AUTOMATIC MULTI CLASS ORGANELLE IEEE - ISBI 2021 SEGMENTATION FOR CELLULAR FIB-SEM IMAGES

C. MEYER¹, V. MALLOUH², D. SPEHNER², E. BAUDRIER¹, P. SCHULTZ² and B. NAEGEL¹ 1 ICube, UMR 7357 CNRS, Université de Strasbourg 2 IGBMC, UMR 7104 CNRS, U1258 INSERM, Université de Strasbourg

Université

de Strasbourg

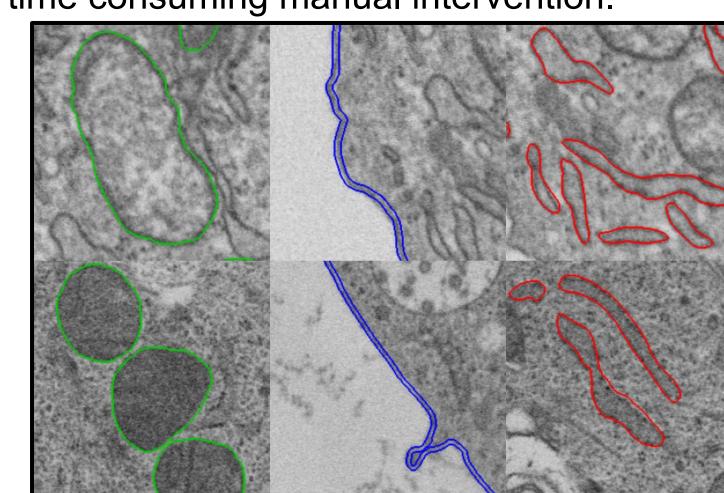
INTRODUCTION

- Focused Ion Beam milling combined with Scanning Electron Microscopy (FIB-SEM) technique is an electron microscopy imaging method that offers the possibility of acquiring 3D isotropic images of biological structures at the nanometric scale
- Cell compartments and organelles annotation is crucial to extract quantitative information such as size, distribution and morphology
- Information could be useful for medical analysis at the cell scale
- Automation of the segmentation step is required for analysis of huge image stacks and to save time consuming manual intervention.

Example of FIB-SEM image 6 patches of size 256 x 256

3 annotated classes:

- mitochondria in green
- cell membrane in blue
- endoplasmic reticulum in

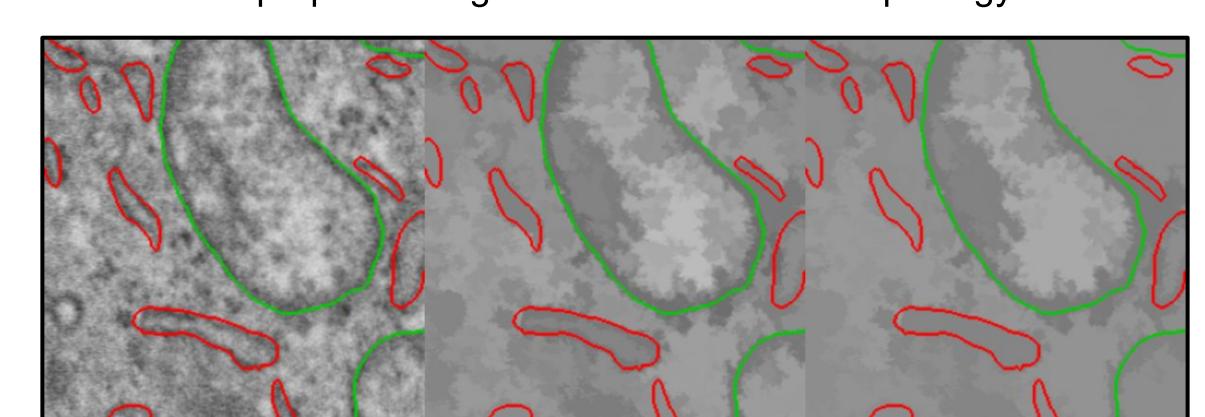


METHOD

- Convolutional Neural Network for semantic segmentation
- UNet: usual contracting/expanding network with skip connection
- EfficientUNet : UNet architecture with an EfficientNet contracting network
- Multiclass dice loss, with X_i the label for class i and Y_i the output given for class i

Loss =
$$1 - \frac{1}{c} \sum_{i=1}^{c} \alpha_i \times \text{Dice}(X_i, Y_i)$$

Grain filter preprocessing from mathematical morphology



Example of filtered patches with threshold value λ of 650 (middle) and 3200 (right)

RESULTS

Experiments details

Data

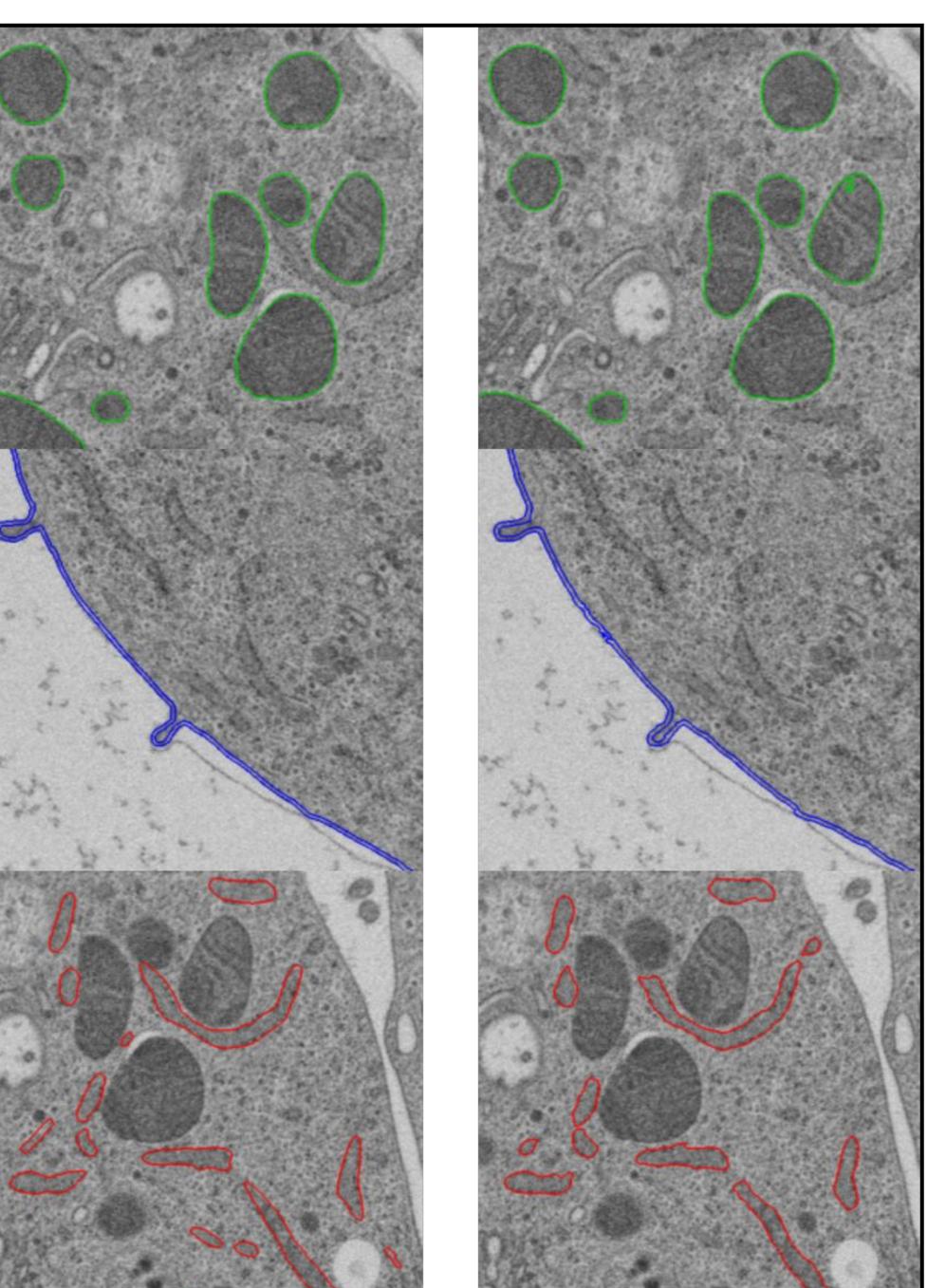
- Two different FIB-SEM images annotated by two experts
- FS-1
- o annotated slices: 79 resolution : 5nm x 5nm x 20nm
- FS-2
- o annotated slices: 80
- resolution: 7.5nm x 7.5nm x 15nm
- 3 classes
- mitochondria
- o cell membrane
- endoplasmic reticulum

Methodology

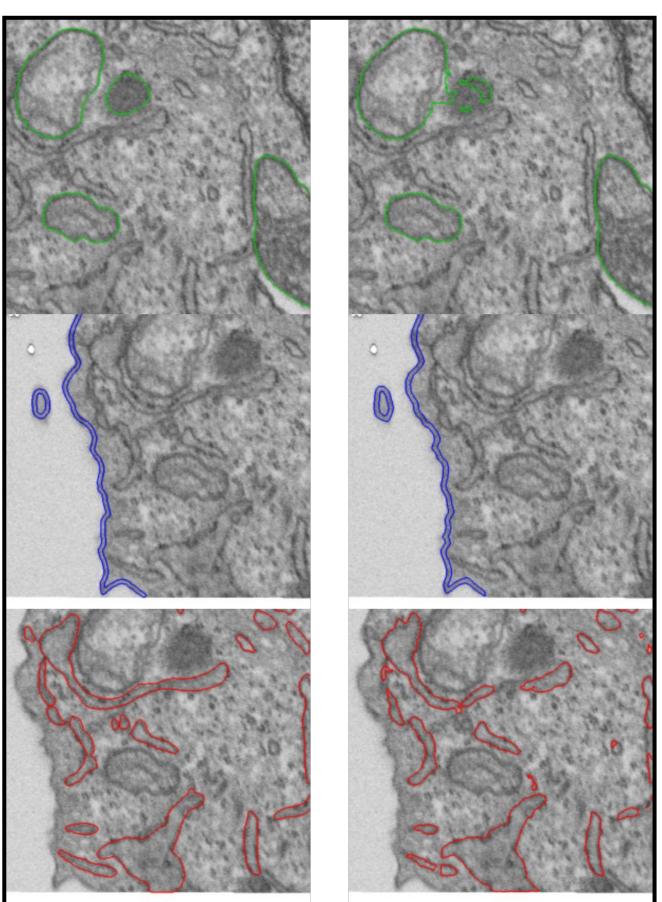
- 256 x 256 patches
- oversampling patches containing annotation
- Class weight: 0.1 (bg), 0.7 (mito), 1.0 (mem), 0.9 (endo)
- Grain filter preprocessing
- \circ $\lambda = 650$ and $\lambda = 3200$

Implementation

TensorFlow, Keras and Higra



Comparison on 500 × 500 subsections of image ground truth on the left, our method on the right FS-2 on the left, FS-1 on the right



Method	F1 Class 1	F1 Class 2	F1 Class 3					
FS-1 image								
UNet	0.937 (0.009)	0.806 (0.012)	0.724 (0.010)					
UNet + Filter	0.939 (0.013)	0.800 (0.019)	0.731 (0.012)					
EUNet	0.951 (0.008)	0.764 (0.036)	0.733 (0.015)					
EUNet + Filter	0.947 (0.011)	0.757 (0.040)	0.739 (0.011)					
llastik	0.185	0.672	0.112					
2nd expert	0.941	0.751	0.740					
FS-2 image								
UNet	0.955 (0.002)	0.754 (0.005)	0.727 (0.003)					
UNet + Filter	0.950 (0.002)	0.742 (0.009)	0.716 (0.005)					
EUNet	0.957 (0.001)	0.752 (0.009)	0.739 (0.007)					
EUNet + Filter	0.955 (0.002)	0.748 (0.009)	0.729 (0.008)					
Ilastik	0.872	0.520	0.216					
2nd expert	0.949	0.593	0.783					

Method	True Positive	False Negative	Under Detected	True Positive	False Negative	Under Detected		
	Class 1 (mitochondria)			Class 3 (endoplasmic reticulum)				
FS-1 image								
EUNet + Filter	92.7% (179/193)	4.7% (9/193)	2.6% (5/193)	46.9% (485/1034)	19.1% (198/1034)	33.9% (351/1034		
llastik	0% (0/193)	49.2% (95/193)	50.8% (98/193)	0% (0/1034)	82.2% (850/1034)	17.8% (184/1034		
2nd expert	100% (10/10)	0% (0/10)	0% (0/10)	23.6% (13/55)	9.1% (5/55)	67.3% (37/55)		
FS-2 image								
EUNet	89.0% (323/363)	6.1% (22/363)	5.0% (18/363)	56.1% (824/1468)	21.5% (316/1468)	22.3% (328/1468		
llastik	62.8% (228/363)	4.7% (17/363)	32.5% (118/363)	0% (0/1468)	60.6% (889/1468)	39.4% (579/1468		
2nd expert	100% (21/21)	0% (0/21)	0% (0/21)	26.5% (18/68)	19.1% (13/68)	54.4% (37/68)		
Percentage of detected component on test set								

CONCLUSIONS

We proposed a deep learning based method, experimented a grain filter preprocessing and two different model architectures. The grain filter preprocessing does not consistently improve results despite noticeable improvement for the human perception. The EfficientUNet model slightly improves the results.

Our method achieves results close to inter-expert variability.

Our method has the advantage of being **generic** to multi-class organelles segmentation, allowing the addition of new classes easily.

Adding more organelles to the segmentation task, such as the golgi apparatus, endosome, and the nucleus with its heterochromatin and euchromatin or nucleolar compartments or the nuclear envelope will be an interesting challenge.

REFERENCES

O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Med. Image Comput. Comput. Assist. Interv. MICCAI 2015, ser. Lecture Notes in Computer Science, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.Cham: Springer International Publishing, 2015, pp. 234-241.

M. Tan and Q. Le, "EfficientNet: Rethinking modelscaling for convolutional neural networks," ser. Proc.Mach. Learn. Res., K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR, Jun. 2019, pp. 6105–6114.

B. Baheti, S. Innani, S. Gajre, and S. Talbar, "Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment," in 2020 IEEE/CVF Conf. on Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 1473-1481.

V. Caselles and P. Monasse, "Grain Filters," J. Math. Imaging Vis., vol. 17, no. 3, pp. 249–270, Nov. 2002.

ACKNOWLEDGEMENTS

We thank F. Alpy from the "Institut de Génétique et de Biologie Moléculaire et Cellulaire" for providing the FS-2 cellular system. We acknowledge the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC. We acknowledge that this work is supported by an IdEx doctoral contract, Université de Strasbourg.

CONTACT INFORMATION

cymeyer@unistra.fr, mallouh@igbmc.fr, daniele.spehner@igbmc.fr, baudrier@unistra.fr, pat@igbmc.fr, b.naegel@unistra.fr

https://github.com/Cyril-Meyer/NeNISt