
Combining Max-Tree and CNN for
Segmentation of Cellular FIB-SEM Images

C. MEYER1, E. BAUDRIER1, P. SCHULTZ2, B. NAEGEL1

INTRODUCTION
● Objective of this work
➢Use attribute based filters to enrich the input of a convolutional neural 

network, extending the work of Farfan et al. [1].
➢Provide a reproducible framework to allow replication of our experiments.

● Max-tree [2] enables to design efficiently nonlinear attribute filters [3].
We propose two strategies to create a transformed image:
➢By means of attribute filtering (strategy 1).
➢By constructing attribute maps (strategy 2).

● Application: Segmentation of organelles in Electron Microscopy.
➢Focused Ion Beam milling combined with Scanning Electron Microscopy.

METHOD

● From the max-tree representation of the image,
compute a transformed image capturing at
pixel level a non-local information relying on
two different strategies:

● Strategy 1: by computing attribute filtered images
● Strategy 2: by constructing dedicated attribute maps
➢For each pixel, selection of the node in the branch which optimizes a 

stability criterion inspired from MSER [4].
➢Keep the attribute value of the selected node.

● H(N) : the height of N.
● A(N) : the area of N.
● Par(N) : the parent node of N.

SEGMENTATION CNN (U-Net)

CONCLUSION
● This work tends to show that enriching a CNN with attribute based filters 

allows to improve a complex segmentation task.
● We provide an open access Python / C++ implementation.
➢Reproducible experimentation.

● Perspectives: Interactive segmentation; use of simpler classifier as 
Random Forest; Tree of Shapes based method.
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● Data
➢40 training slices
➢20 validation slices
➢20 testing slices

● Classes
➢mitochondrion
➢endoplasmic 

reticulum

● Training 
➢10 training per setup
➢11 setups with 10 

different attributes

● Evaluation
➢F1-Score on test set

A U-Net network is trained from the ground truth, using the concatenation of the 
original image and one transformed version of the image as input.

→The proposed method improves the segmentation metric with 
respect to the baseline.


