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ABSTRACT

Deep learning methods using convolutional neural networks are very effective for automatic image segmentation tasks with no

exception for cellular electron micrographs. However, the lack of dedicated easy-to-use tools largely reduces the widespread use

of these techniques. Here we present DeepSCEM, a straightforward tool for fast and efficient segmentation of cellular electron

microscopy images using deep learning with a special focus on efficient and user-friendly generation and training of models for

organelle segmentation.

1 | Introduction

The internal organization of the cell into membrane bound
compartments defines functional domains named organelles
whose number, distribution, shape, and mode of interaction
reflect the cellular identity and its pathophysiologic state. The
morphological description of organelles benefits from the high
spatial resolution of electron microscopes that oversteps Abbe’s
diffraction limit of standard light microscopes. Early transmission
electron microscopy (TEM) observations of cellular structures
were essentially two-dimensional (2D) projections of ~100 nm
thin resin-embedded cellular slices that lacked volumetric infor-
mation. Stereological methods were first used to extrapolate 2D
measurements to the whole cellular volume (Weibel et al. 1966),
but these predictions were limited by the complex shape and
uneven distribution of organelles. To reach 3D information on
whole cells or tissues, serial sectioning protocols were developed
to image successive physical slices of the sample, but this
approach is technically very demanding and suffers from section
distortions (Williams and Kallman 1955). In electron tomography

the specimen is discretely tilted over a range of angles in the
microscope to record multiple views that can be back projected
into a high-resolution tomographic reconstruction. This method
is limited to 500 nm thick sections, but may be combined with
serial sectioning to reach larger volumes.

Advances in scanning electron microscopy (SEM) enabled rapid
imaging of resin-embedded thick specimens at nanometric scale.
Three-dimensional information was first achieved by sequen-
tially removing the top slice with an ultramicrotome fitted in a
SEM chamber and repeatedly imaging the new block face (serial
block face, SFB-SEM) (Leighton 1981). The top slices can be
removed in finer increments using focused gallium ion beam
(FIB) milling thus leading to FIB-SEM tomography (Heymann
et al. 2006). FIB-SEM imaging enables recording high-resolution
5 X 5 x 5 nm isotropic images on 40 X 40 um large image areas
and over a depth of several tenths of micrometers (Narayan et al.
2014; Wei et al. 2012) and has become a powerful tool to obtain
undistorted volume information (Bosch et al. 2016; Cretoiu et al.
2015).
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The morphological parameters and intracellular distribution of
organelles can be studied quantitatively on large portions of cells
or on whole tissue. However, image interpretation requires a
segmentation step to annotate the cellular compartments and
organelles in order to extract quantitative information such
as size, distribution, interactions and morphology from these
delimited regions. These quantitative morphological values can
be used to compare the cell state in normal or diseased states
and, in case of known mutations, may provide molecular clues to
the observed phenotypic variations. A human expert can identify
and segment these cellular domains interactively, but this task
is very tedious and may take several days for each cell. In a
context of massive datasets, the size and complexity of these
image stacks prevents manual segmentation, therefore biologists
need computer-aided methods to identify and segment cellular
organelles.

In the field of image analysis, the recent rise of deep learn-
ing approaches led to the development of models based on
the widespread U-Net neuron network architecture showing
very good performance in supervised segmentation tasks (Ron-
neberger et al. 2015). These methods are now the standard to
solve complex analyses of medical and biological images, in
particular in the field of cellular electron microscopy (Heinrich
et al. 2018; Ronneberger et al. 2015; Xiao et al. 2018). Deep
learning-based segmentation of cellular organelles for EM images
has been applied to mitochondria, endoplasmic reticulum and
other organelles on images with possible anisotropy (Meyer et al.
2021, 2023). Recently, results were shared on the OpenOrganelle
web repository on FIB-SEM images at 4 nm spatial resolution for
over 35 organelles and macromolecular structures (Heinrich et al.
2021).

However, the use of supervised methods based on deep learning
in the field of FIB-SEM imaging faces high image variability
arising from the large diversity of cell lines, the various prepa-
ration protocols including different fixatives or cryo-preservation
conditions and a large panel of contrasting agents and resins.
Variations in the appearance, contrast, and texture of organelles
can further arise from FIB-SEM image acquisition conditions.
Altogether, variations in organelle aspect affect the efficiency of
their automated detection and analysis. Our tests showed that
the currently available U-net architectures are very powerful
to predict organelles when the training and the prediction sets
are imaged in the same laboratory on samples prepared from
a single protocol, while they generally fail when trained on a
given FIB-SEM dataset and applied on images from another
laboratory or protocols. These observations led us to conclude
that semi-automated segmentation is performed most efficiently
when training and prediction are performed on a similar dataset
which reduces image variability.

The implementation of a semi-automated segmentation solution
through the training of a dedicated U-Net architecture applied to
FIB-SEM images is not accessible to every user as it often requires
coding skills. Some U-Net based segmentation solutions for
FIB-SEM images exists and are provided within python jupyter
notebooks or inside python-based anaconda environment. Both
of them requires the user to have basic knowledge and ease
of use in python coding and python environment (Hirabayashi
et al. 2024; Gallusser et al. 2023). Here, we developed an easy

to install, ready to use interactive software that can use any
volumetric FIB-SEM dataset to train a dedicated model. Existing
tools, such as ilastik (Berg et al. 2019) or DeepMIB (Belevich
and Jokitalo 2021) already provide a ready-to-install segmentation
solution encapsulated in a Graphical User Interface (GUI), but
our program differs in several aspects. Firstly, DeepSCEM was
designed to be very user-friendly especially for the evaluation of
its performances by a non-expert user. It can be operated through
a few clicks thanks to dedicated distributions of the software
binaries for both Windows and Linux environments. This means
that DeepSCEM can be evaluated for a given problem in just
a few hours by a non-computer-expert. The second property of
DeepSCEM is its modularity. Being written in Python and using
the widely-used TensorFlow library, new models and parameters
can be easily added, increasing the possibilities for more advanced
users while providing a basic tool with pre-set conditions that
provide satisfactory results. For example, any TensorFlow model
which has valid input and output shapes can be loaded, trained
and used for prediction in DeepSCEM. The third property of the
software lies in its performance. As our software is dedicated to
the particular task of organelle segmentation, it has been opti-
mized to perform this task. This tool accepts as input a training
dataset composed of a representative set of 2D slices (stack)
of a volumetric dataset along with the interactively segmented
organelles or regions of interest. DeepSCEM will train a model
to automatically segment the complete input volumetric datasets
based on the provided manual segmented region. An evaluation
set composed of a few manually segmented sections can be
used to evaluate the accuracy of the predictions qualitatively
and quantitatively. Thanks to its flexible software architecture,
DeepSCEM can be used either through a graphical user interface
(GUI) or a command line interface (CLI). The CLI mode is
particularly useful for integrating the software into automated
data processing pipelines.

2 | Results

In this section, a description of the DeepSCEM application and
its usage is provided. We will first present the general workflow
followed by examples of how the program is used, illustrated
on a representative FIB-SEM image stack. More information
about the imaging conditions and the tools used for initial image
segmentation are available in the methods section.

2.1 | Workflow

In this subsection, we describe the general usage of DeepSCEM,
for automated segmentation of cellular electron microscopy
images. The process can be divided into five main steps
(Figure 1).

i. A training image dataset is selected from the original image
stack and the corresponding annotations need to be created.
Annotations correspond to a manual segmentation of the
organelles in which image features that allow the recog-
nition of a particular cellular ultrastructure are associated
with the corresponding organelle class or instance. When
analyzing a large 3D stack of several hundred images, the
training set typically represents a few tens of images that
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Figure 1 | General workflow of the DeepSCEM application. Images
along with one or multiple labels (binary mask files) are loaded into
DeepSCEM through its user interface. Each combination of image and
labels composes a sample. Existing compatible model can be directly
trained. New models can be created and configured by the user for
training. The model is used to generate a segmentation prediction that
can be evaluated or validated through the user interface.

should be representative of the different types of structures
of interest, and should be large enough to train a robust
neural network model. In order for the deep learning process
to make a good prediction, the object of interest must be
present several times on several images. The accuracy of
the prediction increases with the number of annotations,
and poor or unsatisfactory predictions can be improved by
increasing the number of the annotated instances. Anno-
tations can be provided using software products like MIB
(Belevich et al. 2016), ilastik (Berg et al. 2019) or any other
tool that allows manual segmentation of the images and
generates binary images of the region of interest in TIFF
format.

ii. A neural network model for segmentation is then created.
DeepSCEM provides a model generator which, in the cur-
rent version, can create 2D and 3D U-Net based models with
various parameters including number of filters per layer,
model depth, and use of residual connections. By default,
the program provides a standard neural network model,
but users can also create their own custom models using
TensorFlow and load them directly into DeepSCEM.

iii. The model is then trained on the annotated dataset to
recognize the distinctive features of the object of interest.
Briefly, small patches of images and their corresponding
masks are extracted from the segmented area to be used as
training examples for deep learning. The application allows
the user to select the patch size, batch size, loss function, and
the number of steps to train the model as described in the
example section.

iv. The performance of the training model can be assessed
quantitatively by using a separate set of manually segmented
images. This validation dataset consists of a few images
extracted from the 3D image stack. The aim of this step

is to compare the segmentation performed by an expert,
also called ground truth, with the predicted segmentation.
Quantitative values using Fl-score and intersection-over-
union metrics can be used to prevent overfitting and to select
the best-performing training model.

v. The trained model can now be used to segment cellular
images coming either from the remaining images of the
same stack or from different image stacks.

DeepSCEM provides tools to visualize the results of the segmen-
tation, allowing the user to make a quick qualitative evaluation.

2.2 | Examples

In this section, we present two case studies to illustrate the use of
DeepSCEM to segment organelles in cellular electron microscopy
images. All the data used for these examples and the exact results
presented in this section are available for public research (Meyer
2024a, 2024b; Meyer and Schultz 2023). We present qualitative
and quantitative results for different classes (organelles) to
illustrate the accuracy of the implemented method.

2.2.1 | User Case 1: Single Mask

The aim of this first example is to train a model to automatically
segment a single class of organelle, the mitochondria, in a 3D
stack of 600 consecutive FIB/SEM images of a HeLa cell (see
Material and Methods). The training set consists of 40 images
of the 3D stack that may be consecutive or any selected series.
Mitochondria were manually segmented in this training set by
contouring the external mitochondrial membrane using the MIB
program and filling its inner part (Belevich et al. 2016). The result
of this segmentation is saved as the annotation set corresponding
to a binary mask in TIFF format for each image where the inside
of the mitochondria is marked with 1 and the outside with 0. This
mask is used by DeepSCEM to extract image patches 256 by 256
pixels in size that are representative of the Region Of Interest
(ROI) to be used for the training process. Alternatively, the mask
may delineate only the contour of the ROI, or characteristic
membrane-less textures. To start the training process, the training
set and its corresponding annotation set are first loaded using
the DeepSCEM interface (Figure 2). In order to improve the
prediction score, the number of slices annotated for training
may be adjusted according to the complexity of the object of
interest, the noise level, or the abundance of the feature of
interest.

The next step is to generate a starting model. For this experiment,
we used the U-Net provided by default within DeepSCEM user
interface which is a 2D U-Net with a depth of five down
sampling/up sampling blocks, 32 filters in the first block that
are doubled after each down sampling and residual connections
for each block (He et al. 2016a). We use the Dice loss function
(Milletari et al. 2016) for training during 64 epochs of 256 batches
with a batch size of 8 (Figure 3). In most cases these default values
will produce a useful trained model, but these default values such
as batch size, loss function or number of training steps can be
modified to optimize the training model.
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Figure 2 | Loading and browsing datasets within the DeepSCEM graphical user interface (GUT). (A) hdf5 based dataset can be uploaded using

the icon highlighted in red and is visible in the “dataset” section of the GUI (Red arrow). Here, a complete dataset is highlighted in red. Datasets in
DeepSCEM are structured as follows, the dataset name is first displayed. Each dataset can contain multiple samples representing different regions
of interest (ROI) of a volumetric image stack. Here, the dataset entitled “LW4-MITO-TRAIN” has two samples named “LW4_crop_crop_160_]...]”
and “LW4_crop_crop_240_[...]", respectively. Each sample is composed of at least a stack of EM volumetric images. Presently, the sample
“LW4_crop_crop_160_][...]” is composed of a stack of EM images named “image” and a set of binary masks of segmented mitochondria named
“label_0000”. Datasets can be visualized and browsed by moving the blue thumb of the scrolling bar framed in black at the bottom of the screen.
(B) The sample “LW4_crop_crop_240_][...]” labels are shown: the “image” label shows an EM micrograph and the “image + label_0000” shows the
superimposition of the “image” and “label_0000” labels highlighting the segmentation of mitochondria. Images have been annotated, M stands for

mitochondria, E, endosomes, ER, endoplasmic reticulum.

Then the starting model can be trained on the annotated
dataset (Figure 4). The program also provides opportunities for
data augmentation; modifications made to the original data
during the training phase. In our case, no data augmenta-
tion was used except for image rotations and fliping. Within
the annotated “mitochondria” region, representative and non-
overlapping image patches that describe the texture and intrinsic
features of this class of organelles are extracted and used in
the learning process. The patch size needs to be adapted to
the dimensions of object of interest and the image magnifica-
tion. The patch should be large enough to include as many
characteristic features of the object as possible as well as some
information about the context of the organelle, but not too large
to avoid including surrounding noise that has no predictive
power.

To evaluate the performance of the trained model, a validation
dataset has to be prepared either by using the crop function
available in the software GUI or by splitting the validation and
the training sets by employing a generic software such as ImageJ.
In our case we selected and annotated the next 20 slices of the
image stack to assess whether the model correctly predicts the
presence of mitochondria. The validation set must contain the
feature of interest and can be a selection of non-consecutive image
patches representing the mitochondria in different conditions.
Annotations must be provided by the experts as segmented
mitochondria, and are loaded into DeepSCEM along with the
validation set and the trained model (Figure 5).

As a measure of predictive performance, we use the Fl-score
which is calculated at the pixel level from the precision and
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Figure 3 | Creation ofa starting model. (A) Upon selection of the red framed “+” icon, a starting model can be set up and loaded into the DeepSCEM
GUL The zoomed frame shows the deep learning network parameters used to create a starting model. The values shown here are displayed by default as
they gave good results when used for both user cases. (B) The newly created model is listed in the “Models” section of the DeepSCEM GIU (red frame).
The model dimension, the number of initial block filters as well as the model depth are reported in the model name. As it stands, this initial model
would give poor segmentation prediction because it has not been trained.
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Figure 4 | Prediction model training. (A) Newly created models or compatible ones uploaded to the DeepSCEM GUI can be trained using the red
framed “train” icon. This will open a new window (see the zoomed frame) giving access to the training configuration. There, the training “Model” with
the “Train” and “Valid” datasets have to be selected accordingly. “Batch size” and “Patch size” have to be balanced depending on the image pixel size, the
image features size (such as organelles) and the computer memory available. The number of “epochs” correspond to the number of times the complete
dataset was used by DeepSCEM learning algorithm during training. The “steps per epochs” are the number of batches used to train on the complete
dataset and the number of “validation per epoch” are the batches used to compute the validation (val_loss) at the end of each epoch. The “keep best”
option saves the version of the model with the lowest val_loss. The “early stopping” option stops the training of a model that doesn’t improve based on
the losses. The “rotation” and “flip” are data augmentation options that increase the variability of the training dataset. The “label focus” option biases the
randomness of the patches extraction resulting in a training dataset composed of a desired proportion of segmented patches, here 80%. (B) Illustration of
a patch size of 384 x 384 pixel? (xy) extracted from a section of a 3D stack of 1500 x 1000 x 600 pixel® (xyz). The magnified image on the right panel shows
a 2D patch of 384 x 384 pixel® with a pixel size of 7.5 nm, sufficient to extract multiple instances of mitochondria (M), endosomes (E), or endoplasmic
reticulum (ER). (C) left panel: Training losses as well as the learning rate (displayed as “Ir”) are shown within the terminal as soon as the training starts
and are updated after each completed epoch. The progression of the training can be appreciated by comparing the losses of older epochs to new ones. B
right panel: The user is informed of the end of the training by a pop-up window on the main GUI.
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Figure 5 | Segmentation prediction and evaluation. (A) The red framed “predict” icon on the main GUT gives access to the prediction parameters
window. “Model” and “Dataset” entries have to be selected accordingly and the patch size has to be set up depending on the size of the stack to be
segmented and the computer memory. The prediction progression can be followed in the terminal. The user is informed that the prediction ended by a
pop-up on the main GUI (B) The dataset loaded for segmentation and its prediction can be both visualized within DeepSCEM GUI upon selection. The
title of the predicted segmentation sample contains an added “pred” mention (see the red stroke). (C) The button with the mark symbol framed in red
gives access to the evaluation windows. “Reference” loaded dataset and “Segmentation” predicted datasets have to be selected accordingly as well as the
metrics wanted. F1 and/or IoU scores are then calculated and displayed.
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Figure 6 | Qualitative segmentation predictions. (A) Reference segmentation of mitochondria (red), endoplasmic reticulum (green), endosomes
(pink), and plasma membrane (blue). (B) Mitochondria segmentation prediction using a binary model. (C) Mitochondria and endoplasmic reticulum
segmentation predictions using a model trained on two classes. (D) Mitochondria, endosomes, and plasma membrane segmentation predictions using

a model trained on three classes.

recall of the test, where a pixel has a negative value when the
predicted class does not correspond to the segmented class, and a
positive value when the prediction matches the annotation. The
precision is the number of true positives divided by the number
of predicted positives and the recall is the number of predicted
positives divided by the number of all positives. The Fl-score
corresponds to the harmonic mean of precision and recall. The
intersection-over-union (IOU) metrics (Everingham et al. 2010)
can also be used to measure how well pixels predicted to be
mitochondria align with the ground truth. Both metrics can be
retrieved from the software GUI. In the case of mitochondria, the
predictions are of high quality (F1 score of 0.950).

The last step is to apply the trained model to the remaining 560
images of the stack. One has to enter the prediction mode of
DeepSCEM, select the trained model to be used and load the stack
of images on which a segmentation prediction is to be performed.
If such a prediction is made on images that have already been
annotated, such as a validation set, a test score can be computed
to compare the manual segmentation with the prediction. To do
this, the evaluation mode has to be entered to select the images to
be compared which then allows to compute the F1-score.

2.2.2 | User Case 2: Multiple Masks

The aim of this second example is to train a model to auto-
matically segment multiple organelles in the same 3D stack.
The training set consisted of 40 images where each organelle
was segmented separately resulting in a different mask file for
each organelle and for each annotated image (Figure 6A). Mito-
chondria were segmented as described above, and endoplasmic

reticulum (ER) as well as endo-lysosomes were annotated in
the training set. In addition, we also annotated the external
cell membrane (plasma membrane) which separates the cell
boundary from the external matrix. In this case only the cell
contour appeared in the mask as a continuous line whose width
was three times the size of the membrane.

In order to train a deep neuronal network model for multiple
organelles the number of labels has to be set accordingly. In the
DeepSCEM environment, each label corresponds to binary masks
of the segmented objects of interest. All mask files as well as
the raw images are loaded separately, listed in the DeepSCEM
“Dataset” section and organized as a sample (Figure 2). A new
model is generated as for user case 1.

When the model is trained with two classes, mitochondria and
ER, using default parameters and a patch size of 256 x 256, the
prediction score for mitochondria remains similarly high (F1-
score of 0.951) while ER is less accurately predicted (F1-score
of 0.709, Figure 6B,C). This reflects the lower detection limit
of the organelle boundaries even for a trained expert. Indeed,
two independent experts perform only slightly better and their
compared annotation yields a Fl-score of 0.751. Changing the
patch size to 512 x 512 slightly degrades the F1 score for both
organelles (0.947 for mitochondria and 0.691 for ER) possibly
because including more contextual information adds more noise
than signal. We also trained the model with three classes, namely,
mitochondria, endosomes, and plasma membrane which yielded
F1 values of 0.966, 0.836, and 0.740, respectively. The relatively
poor score for endosomes may be related to their pleiotropic
shapes and internal organization. Indeed, the endo-lysosomal
compartment includes early and late endosomes that have a
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Figure 7 | Gallery of endosomes and lysosomes that form a very heterogeneous class of organelles that have a different appearance according to

their origin and maturation stage.

different texture, contrast and general appearance (Figure 7). A
larger training set representing the whole variability in shape and
textures is likely to provide better predictions.

3 | Conclusion

Here we describe DeepSCEM, a new tool to train a deep learn-
ing model for automatic segmentation of volumetric electron
microscopy images. This tool delivers predicted segmentations
of cellular features that was illustrated by FIB/SEM images for
Hela cells but can be adapted to any kind of cellular or tissue
system as well as for other volumetric images modalities such as
block phase SEM images or serial sectioning. The trained model
can be further used to predict segmentations for image stacks
of similar cell types and preparation conditions. More expert
transfer learning approaches will be developed in the future to
overcome the prediction failure when the cells are very different
or are prepared with different staining or fixation conditions.
Considering the limited time required to train a model, it may
be possible to overcome this limitation by providing a dedicated
pre-trained model for each preparation condition.

DeepSCEM is intended to be evolutive and to be extended
to comply with state-of-the-art deep learning architectures,
computing of losses and additional options to optimize the
deep learning models, but also to adapt to the diverse needs
of future users. The automatization of hyperparameter tuning
using nnU-Net, the implementation of sparse segmentation
(Isensee et al. 2021) (https://github.com/MIC-DKFZ/nnUNet/
blob/master/documentation/ignore_label.md) as well as the

availability of different loss functions such as cross entropy
or mean square error will be considered in future versions
of the program to help users to fine tune parameters and
extend the operability of the segmentation tool. For this purpose,
users are widely encouraged to contact the authors using the
GitHub issue page in order to propose improvements to the
software.

4 | Materials and Methods
4.1 | Sample Preparation

The sample consists of HeLa cells stably expressing the protein
STARD3 (Wilhelm et al. 2017) and processed after high pressure
freezing and freeze substitution. Hela cells were grown on carbon-
coated sapphire disks in DMEM containing 10 percent Foetal Calf
Serum before being high pressure frozen (HPM 10 Abra Fluid AG)
in liquid nitrogen. The samples are then freeze-substituted (AFS,
Leica) and embedded in Lowicryl HM20 as previously described
(Spiegelhalter et al. 2010). The samples were dehydrated at —90°C
for 9 h in dry acetone containing 0.25 percent uranyl acetate
and 0.1 percent glutaraldehyde. Temperature was raised to —45°C
over 18 h with a slope of 2.5°C/h. The cells were then rinsed
with acetone and infiltrated in 10 percent and 25 percent resin
(Lowicryl HM20) for 2 h each bath. When the resin concentration
reached 25 percent, the temperature was raised to —25°C and the
resin concentration raised to 100 percent in three successive steps.
The samples were then placed in three consecutive baths of pure
resin lasting 8 h each before UV polymerization at —25°C for 48 h
and warming to 20°C during 9 h.
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https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/ignore_label.md

4.2 | Cellular Electron Microscopy

Focused Ion Beam (FIB) milling and SEM observations were
performed using the Auriga 60 instrument (Carl Zeiss Microscopy
GmbH, Oberkochen). For 3D reconstruction, 15 nm thick slices
of the resin embedded sample were removed by FIB milling and
the freshly exposed cross-section was imaged in a serial manner
with a lateral pixel size of 7.5 nm. The analyzed image stack is
2048 by 1536 pixels in size corresponding to 15.3 by 11.5 um and
consists of 600 slices corresponding to a depth of 9 ym. For FIB
milling the probe current was set to 2 nA at 30 kV acceleration
potential. For noise reduction line averaging with line averaging
count number N =11 and scan speed 4 was used. The resin block
was glued on an aluminum stub using silver paint (Silver dag 1415,
Plano GmbH, Wetzlar). First all side walls beside the block face
were covered by silver paint and then the block face was sputter-
coated with a few nanometer thick metal film to avoid resin
charging. The SEM acceleration voltage was set to 1.5 kV, the SEM
aperture was 60 pm and high current mode was turned on. For
SEM imaging the Energy selective Back-scattered electron (EsB)
detector was used with a retarding EsB grid voltage of 1155 V. The
gray level scale was reversed in order to obtain a TEM like image
contrast.

4.3 | Annotations

Manual segmentations or annotations have been generated using
MIB (Belevich et al. 2016). Similar annotations can also be created
using software tools such as ilastik (Berg et al. 2019) or any other
tool which allows annotations of the images and generates binary
images of the region of interest in TIFF format. Closed regions of
interest such as mitochondria, nuclei, endosomes, endoplasmic
reticulum are segmented to encompass all pixels that are part of
the structure. External cell membranes or nuclear membranes are
segmented as continuous lines with a suitable line thickness. For
the validation set, each instance has been interactively segmented
by two experts in order to estimate the inter-expert decisional
variation.

4.4 | Deep Learning
4.4.1 | Hardware Configuration

The analysis shown here has been performed on a workstation
equipped with 64 Go of RAM, a NVIDIA RTX 2080 Ti GPU,
and an Intel Xeon W-2135 CPU. Using this configuration, the
average training time was 59 min, ranging between 2 h for a
large model containing 64 filters, instead of the standard 32, and
less than 30 min for models containing 16 filters. The prediction
time on a test set of 40 slices was 40s, but the prediction
time for a stack of 600 images 2048 by 1536 pixels in size was
20 min. A total processing time of 1 h is therefore to be expected,
not counting the annotation time. DeepSCEM can also run on
a less powerful hardware configuration but, in order to load
large datasets and train bigger models, the amount of memory
should be proportional to the dataset size and model parameters.
Although not required, the GPU card significantly reduces the
computation time, especially for the training process.

4.4.2 | Architecture

In the biomedical field, the most common architectures include
U-Net (Ronneberger et al. 2015), DeepLab and its evolutions,
DeepLabV3+ (Chen, Papandreou, et al. 2018; Chen, Zhu, et al.
2018). The U-Net architecture has quickly become popular as
the model is easy to implement, and extend. The original article
presents a high-performing network with a small amount of
training data, thanks to data augmentation techniques. Also, as
the model can be implemented as a fully convolutional neural
network, its input and output shapes can be adapted to user
prerequisites.

The U-Net uses the principle of an encoder-decoder architecture
with long skip connections between the convolutional blocks of
the same level. Many variants of the U-Net model have been
proposed that modify the processing blocks (He et al. 2016a,
2016b) or the types of connections (Chaurasia and Culurciello
2017). However, regardless of the variations proposed, the overall
architecture remains the same: an encoder-decoder model with
connections between the encoder and the decoder.

To give a simplified idea of how the elements of the model work
together, it can be summarized as follows. The encoder extracts
features from the input image. It consists of a series of convolu-
tional blocks, each of which is composed of convolutional layers
and various optional layers such as batch normalization (Ioffe and
Szegedy 2015). The number of filters in the convolutional layers
is increased as the image is down sampled, allowing the network
to capture more complex features. The decoder is responsible for
generating the segmentation mask from the features extracted
by the encoder. It is in essence the symmetry of the encoder,
where down sampling is replaced by up sampling to generate
a segmentation mask with the same resolution as the input
image. The long skip connections are concatenations between
the convolutional blocks of the same level in the encoder and in
the decoder. These connections allow the network to preserve the
spatial information and fine details of the input image to generate
a more accurate segmentation mask.

The U-Net architecture can be easily parametrized to fit specific
tasks. You can for example change the number of filters per
layer, the depth (number of down sampling/up sampling steps
in the encoder/decoder) or the processing blocks composition by
adding residual connections or batch normalization layers. Those
changes can allow us to create a very coarse model for a specific
easy task, but also to create a very large and efficient model for a
more complex task. The architecture can be used with either 2D
or 3D processing blocks.

4.5 | Training

Once we have a segmentation model, it is classically initialized
with random weights and the model needs to be trained. In
order to train a model, a dataset with images and their corre-
sponding annotations are required in TIFF format. During the
training phase, the model is presented with batches of images
(patches) and their corresponding annotations. The set of patches
are generated randomly in the image by avoiding overlapping
and each patch may contain between O and all classes under
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consideration. No sampling correction is applied to compensate
for class imbalances. The loss function measures the difference
between the predicted segmentation mask and the reference
segmentation. The weights of the model are updated based
on this difference using an optimization algorithm based on
stochastic gradient descent, like Adam (Kingma and Ba 2015).
To improve the performance of the model, various techniques
can be used during training, like data augmentation, which
involves applying transformations to the images and annotations.
Overfitting is a common issue in deep learning that can be simply
explained as the model starting to memorize the training data
instead of learning the underlying patterns. This can lead to poor
performance on unseen data. To prevent overfitting, we use a
validation set during training. The validation set is a subset of
data that is not used for updating the weights of the model, but
to monitor the performance of the model. The validation can be
used to stop a training which is getting worse due to overfitting or
divergence, but more importantly to select the best overall model
on this validation set. The performance on the validation set can
also be used to determine the best hyperparameters for training,
such as learning rate, number of layers, batch size, and so forth.

After the model is trained, it can be used for automated segmen-
tation of the images. We may further use a final image subset,
the testing set which should not have been used for training or
validation, to determine the performance of the model. If the
model is only evaluated on the training and validation set, it may
appear to perform well, but may not generalize well.
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